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We derive the effective viscosity of dilute suspensions of swimming bacteria from the microscopic details of
the interaction of an elongated body with the background flow. An individual bacterium propels itself forward
by rotating its flagella and reorients itself randomly by tumbling. Due to the bacterium’s asymmetric shape,
interactions with a prescribed generic �such as planar shear or straining� background flow cause the bacteria to
preferentially align in directions in which self-propulsion produces a significant reduction in the effective
viscosity, in agreement with recent experiments on suspensions of Bacillus subtilis.
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Recently, there has been much interest in studying the
dynamical properties of interacting self-propelled organisms
such as flocking birds, schooling fish, and swarming bacteria
�1–6�. Such systems, relying on nonlocal interactions, exhibit
collective behavior absent from passive systems, such as sus-
pensions of inert particles. Experiments on bacteria sus-
pended in liquid films have demonstrated enhanced diffusion
of tracer particles �1� and collective flow speeds that exceed
the speed of an individual bacterium by an order of magni-
tude �7�. In our experiments �detailed in �8��, the swimming
of suspensions of Bacillus subtilis was observed to cause a
decrease in the effective viscosity by an order of magnitude.
Whereas phenomenological arguments relating the viscosity
of suspensions to the activity of particles �9�, studies of vis-
cosity in two-dimensional geometry �10�, and numerics
�11,12� have been presented, the issue of viscosity in suspen-
sions of swimmers still lacks conceptual clarity. In �9�, a
phenomenolgical order parameter is used to characterize the
local ordering of the system �i.e., the local alignment of
swimming particles�. The relationship of the evolution of the
order parameter to the microscopic alignment dynamics was
not clarified, and the very possibility of arriving at macro-
scopic expressions for the effective viscosity from first-
principles arguments was not established.

In this paper, we study the rheology of dilute suspensions
of swimming bacteria. In the dilute regime �when the volume
fraction ��2%�, bacteria interact only with the background
flow and not with each other, simplifying the problem dra-
matically. Nevertheless, producing an adequate model has
proved challenging. Numerical simulations in �11� using
spherical bacteria with imposed boundary velocities model-
ing self-propulsion were able to predict a decrease in the
effective viscosity only in the presence of a gravitational
field. In �10�, modeling bacteria as self-propelled disks
�where drag on the flagellum is neglected�, we obtained an
asymptotic expression for the effective viscosity in terms of
a given orientation distribution function P. This showed that
there is a decrease in the effective viscosity due to self-
propulsion when bacteria align along one of the principal
axes of the hydrodynamic rate of strain tensor. This align-
ment can only be achieved by asymmetric bacteria.

In this work, we significantly generalize and extend the

work in �10�. We consider asymmetric bacteria in a three-
dimensional geometry and include the effects of tumbling
�random reorientation�. We have derived analytical expres-
sions for all components of the deviatoric stress tensor along
with steady-state orientation distributions for several relevant
cases and used these to obtain explicit expressions for the
effective viscosity. Most significantly, we base our analysis
on microscopic considerations, and, hence, extend and
complement the phenomenological theory of nematic order-
ing. In particular, it is possible from our model to write down
the order-parameter equation and provide a rigorous justifi-
cation for the phenomenological theory presented in �9�. We
quantify the dependence of the local ordering and the effec-
tive viscosity on the microscopic parameters: the shear rate
and vorticity of the flow, as well as the bacterial shape and
tumbling rate. The dependence on vorticity has not previ-
ously been observed in phenomenological theories.

Our analysis shows a general trend of decreasing effective
viscosity with increasing bacterial concentration and activity
�speed of swimming�. The effect is best demonstrated in Fig.
1 where selected results on experiments with aerobic motile
bacteria Bacillus subtilus confined in a free-standing liquid
film are presented. A detailed account of the experimental
work will be reported in the experimental �8�. The viscosity
� is inferred from the decay rate � of a macroscopic vortex
of size L�2 mm induced in a thin film containing a bacte-
rial suspension by a moving microprobe. The experiments
were performed for a broad range of bacterial volume frac-
tions �. As one can see from the Figure, an almost sevenfold
drop of the decay rate � is measured while the density is
increased from �=0 �no bacteria� to ��2%. Since the vis-
cosity ���L2, this indicates a significant decrease of the
viscosity.

Bacteria come in a variety of shapes, including spheres,
rods, and spirals and employ many different forms of motil-
ity. We consider bacteria similar to the Bacillus subtilis used
in the experiments in �7�. This is a rod-shaped unicellular
microorganism that propels itself through the rotation of sev-
eral helical flagella distributed throughout its body. It moves
in two distinct modes �see, e.g., �13,14��: forward movement
�swimming� and tumbling �random reorientation�. It spends
most of its time moving forward, with its flagella bundled

PHYSICAL REVIEW E 80, 041922 �2009�

1539-3755/2009/80�4�/041922�7� ©2009 The American Physical Society041922-1

http://dx.doi.org/10.1103/PhysRevE.80.041922


together so that they rotate as one strand. At random times
�depending on conditions, the average time between tum-
bling events varies from 1 to 60 s; see �14��, the flagella
unbundle and rotate separately, causing the bacterium to re-
orient, until the next bundling event. This effectively results
in a random reorientation of the bacterium that can be mod-
eled as a random walk on the unit sphere �15�. It should be
noted that not all bacteria are propelled in such a manner,
and our results are not expected to hold for bacteria that do
not tumble.

We model a bacterium as a rigid prolate spheroid with
semiaxes a, b �see Fig. 2� subject to no-slip boundary con-
ditions in a Stokesian fluid of viscosity � whose velocity is
denoted by u and pressure by p. The bacterium translates
with linear velocity v and rotates with angular velocity �.
On the container boundary, the fluid is subject to boundary
conditions u=E ·x+��x, where E is a given symmetric
and trace-free matrix and � is a given vector. Self-
propulsion is modeled by means of a rigidly attached point

force of magnitude c and direction d̂ located at x f, displaced

by b�1+	�d̂ from the center of the bacterium xc. In order to
model tumbling, the bacterium exerts a torque 
 on the fluid

selected to make ḋ̂ contain a white-noise process. The dy-
namics of each bacterium are determined by enforcing a bal-
ance of hydrodynamic forces and torques with those exerted
by the bacterium on the water

�
�B

� · n̂dx + cd̂ = 0,

�
�B

� · n̂ � �x − xc�dx + 
=0, �1�

where �B is the surface of the bacteria, �ijª−p�ij +2�eij is
the stress, and eijª

1
2 �

�ui

�xj
+

�uj

�xi
� is the rate of strain.

In the dilute limit, the fluid problem is posed for a single
particle in an infinite domain,

�
�u = �p + cd̂��x − x f� x � R3 \ B

� · u = 0 x � R3 \ B

u = v + � � �x − xc� x � �B

u → E · x + � � x x → �

�
�B

� · ndx + cd̂ = 0

�
�B

� · n � �x − xc�dx + 
 = 0

	 . �2�

We obtained the exact solution to Eq. �2� by taking the
Green’s function for Stokes’ equation and canceling the flow
at the surface of the bacterium using Faxén’s law for the
prolate spheroid �see Appendix�. Assuming the bacterium is
placed in a background flow described by a constant rate of
strain E and vorticity �, we plug the hydrodynamic solu-
tions into �1� to obtain the equations of motion for a single

bacterium with linear velocity v=vd̂ and angular velocity �:

c = 6�b�vN �3a�


i = 8��b3�XCdidj + YC��ij − didj���� j − � j�

− 8��b3YH�ijmdmdkEjk, �3b�

where XC, YC, YH are scalar functions of the eccentricity e
=
b2−a2 /b and N is a scalar function of e, 	 �16�. XC, YC,
YH, and N are plotted in Fig. 3.

Since in isotropic media the effective viscosity does not
depend on the locations of individual bacteria, we do not

need to solve Eq. �3a� explicitly. Introducing P�d̂ , t�, which
represents the probability that any bacterium, at time t, has

orientation d̂, Eq. �3b� leads to the Fokker-Planck equation

�P

�t
= − �d̂ · �Pḋ̂D� + Dd̂P , �4�

where d̂ is the spherical Laplacian, �d̂ is the spherical gra-

dient, and ḋ̂D is the deterministic contribution to ḋ̂ �due to
interaction with the background flow only—i.e., the solution
of Eq. �3b� with 
=0�. We assume the relevant distribution

FIG. 1. Semilogarithmic plot illustrating the decay of the typical
velocity v of a macroscopic vortex normalized by the maximum
velocity vmax for different values of the volume fraction �. The
lines show a fit to v�exp�−�t�. The dashed line with circles corre-
sponds to a fluid without bacteria and the solid line with diamonds
corresponds to the suspension with a 2% volume fraction of
bacteria.

FIG. 2. Schematic representation of a bacterium �left�, bacte-
rium with orientation �� ,��, alternatively described by the unit vec-

tor d̂ �right�.
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for calculating bulk quantities is the steady-state distribution
P� obtained from Eq. �4� by setting �P�

�t =0.
The bulk deviatoric stress is defined by

�ij ª nV�
S2
�

V
��ij�d̂� −

1

3
�ij�kk�d̂��P��d̂�dxdS , �5�

where nV is the volume density of bacteria, V is any volume
containing the entire suspension �the value of � is indepen-

dent of V�, and ��d̂� is the hydrodynamic stress due to an

inclusion centered at the origin with orientation d̂. Plugging
in u and p, we obtain our first result �see Appendix�,

�ij = 2�Eij + �b2

a2��5�
S2

�ijklP
�dSEkl − 3BYH�

S2
��ikldj

+ � jkldi�dl�kmndmdnP�dSEmn + 3YHD�
S2

��ikldj

+ � jkldi�dl�kmndm��nP��dS� +
c

16�a2K�
S2

��ij

− 3didj�P�dS� + O��2� , �6�

where � is a function of shape and orientation and K is a
scalar function of e and 	, both given in �16�, and Bª

b2−a2

b2+a2 .
Plots of YC, YH, and K are given in Fig. 3. The first term in
Eq. �6� is the standard Newtonian stress. The second and

third terms are due to the presence of passive spheroids and
are taken from �17�. The fourth term is the diffusive stress,
obtained from �18�. The last term is due to self-propulsion.
Since K�0, the sign of the last term is determined by the
sign of c �c�0 for “pushers”� and the distribution of orien-
tations of the bacteria with respect to the background flow.
This term is proportional to �ij −3didj, the same form as the
term in �19� derived for ensembles of dipoles. It can be in-
terpreted as an active stress in the notation of �20�. To obtain
further insight into the rheology of bacterial suspension, we
must determine P�.

Without loss of generality, we choose E and � corre-
sponding to planar shearing and straining flows in three
cases, allowing us to calculate viscosities valid in a variety of
relevant physical situations. First, we consider a pure strain-
ing flow, which has a tendency to align elongated particles
and hence bacteria. Such a flow is representative of the flows
bacteria would experience when swimming in groups, as
they tend to align in these cases. Next, we calculate the ef-
fective viscosity for planar shearing flows. This allows for
comparison with previous analytical work on the viscosity of
passive suspensions that use such flows �e.g., �21,18,22��.
Finally, we consider an oscillatory shear flow. This type of
flow is used in experiments where viscosity is measured. The
shearing and straining flows are described by E with E12

=E21= �̇
2 and all other components Eij =0 with �= �0,0 ,− �̇

2 �
and �= �0,0 ,0�, respectively. For the oscillatory case, we
replace �̇ with �̇ sin �0t. We define the effective viscosity by
�̂ª

�12

�̇
. It is not possible to solve the Fokker-Planck equa-
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tion analytically for any of our background flows, so we
must do so asymptotically in various parameters and numeri-
cally in the general case. The parameters used depend on the
form of the Fokker-Planck equation for each flow. The nu-
merics are performed using a finite difference scheme on a
uniform mesh with 80,400 points. The resulting linear sys-
tem is solved using the method of biconjugate gradients. Nu-
merical viscosities are then calculated using Eq. �6� by set-
ting the various parameters to values established in the
literature. It is assumed that the bacteria have dimensions b
=4 �m �see �7��, b

a =5.7 �except for the small eccentricity
asymptotics, where it is assumed that B=0.01� and 	=0.5.
We assume a bacterial swimming speed v=50 �m s−1 and a
rotational diffusion constant D=0.017 s−1 �see �8��.

In the planar straining flow, bacteria tend to align with the
steady axis of the flow, corresponding to angles �= �

4 , 3�
4

with �= �
2 . Plugging this into Eq. �6� and applying Eq. �3a�,

we calculate an effective viscosity

�̂

�
= 1 + �S −

3bv

8a2�̇
NK� + O��2� , �7�

where S is a scalar function of e, given in �16�. Plots of N, K,
and S are given in Fig. 3. The second term in Eq. �7� repre-
sents the passive contribution and the third the active contri-
bution. This formula extends the result of �10� to 3D. Since
K�0, there is a decrease in the effective viscosity due to
self-propulsion. Note that Eq. �7� is only valid for �̇�D,
because the assumption of full alignment is invalid other-
wise. Equation �7� is plotted against �̇ with the correspond-
ing numerics in Fig. 4.

For the same flow, we now assume the dimensionless pa-
rameter �ª

�̇B
D �1 �i.e., bacteria have a weak tendency to

align with the background flow due to being nearly spherical
or weak advection�. In this flow, the deterministic part of the
particle trajectories is described by

��̇D =
B�̇

2
cos 2�

�̇D =
B�̇

4
sin 2� sin 2�

.	 �8�

Constructing ḋ̂D from this and plugging these into �P�

�t =0
�see Eq. �4�� leads to the steady-state Fokker-Planck equation

0 =
�

2
sin 2� sin ��3P� sin � −

�P�

��
cos �� −

�

2
cos 2�

�P�

��

+ �,�P�, �9�

where �,� is the spherical laplacian. For ��1, we calculate
an asymptotic solution to the Fokker-Planck equation, given
by

P� =
1

4�
1 + �

1

4
sin 2� sin2 �� + O��2� . �10�

A plot of a numerical solution for P� is given in Fig. 5.
Plugging Eq. �10� into Eq. �6� and applying Eq. �3a�, we
derive the effective viscosity

�̂

�
= 1 + �M −

3b

80a2�̇
NKv� + O��2�� + O��2� , �11�

where M is a scalar function of e given in �16�. Plots of M,
N, and K are given in Fig. 3. The second term is the passive
contribution and the third term is the active contribution.
This formula indicates that the suspension is very weakly
non-Newtonian �since �̂=C+O��̇2��. A striking feature of
the formula is the fact that the active contribution does not
disappear in the limit �̇→0. This is counterintuitive because
as �̇→0, P�→ 1

4� and hence the active contribution to the
bulk deviatoric stress �a averages to zero. However, for
small �̇, P�= 1

4� +C�̇+. . . and �a acquires a contribution ��̇.
When calculating �a from P�, the constant term �in �̇� aver-
ages to zero, but the linear term remains. Hence, the active
contribution to the effective viscosity �̂a

ª

�a

�̇
contains a non-

vanishing term. However, in reality, the time it takes for a
suspension to reach the steady state P� increases as �̇→0.
Thus, for small enough �̇, diffusion will dominate advection
and the actual P� will be closer to 1

4� , which will produce

2ππα0
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π
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β

FIG. 5. �Color online� A plot of P� in the flow without vorticity
for �̇=0.14 s−1. Darker regions indicate the peaks and troughs. The
peaks �red� are located at approximately �= �

4 , 5�
4 with �= �

2 .
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�̂a=0. Equation �11� is plotted against �̇ along with corre-
sponding numerics in Fig. 4.

We next consider the planar shear flow. In this flow, the
deterministic part of the spheroids’ orbits is described by

� �̇D =
�̇

2
�1 + B cos 2��

�̇D =
B�̇

4
sin 2� sin 2� .	 �12�

Plugging this into �P�

�t =0 �see Eq. �4�� yields the Fokker-
Planck equation

0 =
B�̇

2
sin 2� sin ��3P� sin � −

�P�

��
cos �� −

�̇

2
�1

+ B cos 2��
�P�

��
+ D�,�P�. �13�

P� has been calculated for small eccentricity e asymptoti-
cally in the small parameter �ª b

a −1 in �18�, and is given by

P� =
1

4��1 + �

3 sin2 � sin�2� − arctan
�̇

6D
�

2
1 + �6D

�̇
�2 � + O��2� .

�14�

A plot of a numerical solution for P� is given in Fig. 7.
Plugging Eq. �14� into Eq. �6� and applying Eq. �3a� pro-
duces

�̂

�
= 1 + �5

2
−

27vbDN�5	2 + 10	 + 2�
10a2�36D2 + �̇2��1 + 	�4� + O��2�� + O��2� .

�15�

The second and third terms are the passive and active con-
tribution, respectively. As in �18�, the effect due to eccentric-
ity differs from that of a sphere at O��2�. Equation �15� is
plotted against �̇ along with corresponding numerics in Fig.
6.

We now place our particles in a weak � �̇
D �1� oscillatory

shear flow with frequency �0. In this flow, the deterministic
particle trajectories will obey

� �̇D =
�̇

2
sin �0t�1 + B cos 2��

�̇D = �̇ sin �0t
B

4
sin 2� sin 2�	 . �16�

Using these to construct ḋ̂D and plugging them into �4� yields
the time-dependent Fokker-Planck equation

�P

�t
=

1

2
�̇ sin �0tB sin 2� sin ��3P sin � −

�P

��
cos ���

− �1 + B cos 2��
�P

��
� + D�,�P . �17�

We calculate the solution to Eq. �17� asymptotically in �̇
D by

expanding it in a Fourier series, producing

P��,�,t� =
3

8�

�̇BD sin 2� sin2 �6D sin �0t

36D2 + ��0�2 + ¯ �18�

A plot of a numerical solution for P� is given in Fig. 7.
Plugging Eq. �18� into Eq. �6� and applying Eq. �3a� yields

�̂

�
= 1 + �M − K

27bvBDN

20a2�36D2 + ��0�2�� + . . . �19�

The second and third terms are the passive and active con-
tributions, respectively. Equation �19� is plotted against �̇
along with corresponding numerics in Fig. 6.

We have calculated the effective viscosity of bacterial sus-
pension and performed experiments in qualitative agreement.
The dilute limit allowed us neglect the interactions between
bacteria and thus to carry out the calculations fully analyti-
cally. While it is not obvious that the interactions are negli-
gible in experiments, the results are nevertheless in qualita-
tive agreement with experiment. We have demonstrated and
observed that bacterial self-propulsion decreases the effec-
tive viscosity of an ambient fluid. For weak enough back-
ground flows, this decrease outweighs the passive increase in
viscosity due to the suspension to produce a net decrease in
the viscosity of the fluid. For strong background flows the
effect of self-propulsion becomes negligible and an active
suspension becomes indistinguishable from a passive one.

The reduction in viscosity due to self-propulsion pre-
dicted in our model relies on the bacteria being “pushers”
�i.e., c�0�. However, our results are still valid for “pullers”
�e.g., some motile algae� which can be modeled in the same
way but with c�0. In this case, there is an increase in vis-
cosity due to self-propulsion. That there is a fundamental
difference in the physics of “pushers” and “pullers” was pre-
viously observed in �23,24�.

2ππα0
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2ππα00
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β
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FIG. 7. �Color online� �a� A plot of P� in the flow with vorticity
for B= b2−a2

b2+a2 = .01 and �̇=0.017 s−1. Darker regions indicate the
peaks and troughs. The peaks �red� are located at approximately
�= �

2 , 3�
2 with �= �

2 . �b� A plot of P� in the flow with vorticity for
b
a =5.7 and �̇=0.14 s−1. Darker regions indicate the peaks and
troughs. The peaks �red� are located at approximately �= �

4 , 5�
4 with

�= �

2 .
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APPENDIX: THE BULK STRESS

We calculate � by splitting it into passive, tumbling, and
active contributions. We write ud=up+ut+ua, where up de-
scribes interaction of a passive spheroid with the background
flow, ut describes the effects of tumbling, and ua describes
the effects of forward self-propulsion. We then define �p, �t,
and �a as the corresponding bulk stress.

�p is calculated in �17� and is given by

�ij
p = 2�Eij +

5b2

a2 ���
S2

�ijklP
�dSEkl − 3��BYHb2

a2�
S2

��ikldj

+ � jkldi�dl�kmndmdnP�dSEmn, �A1�

where � is the volume fraction of the suspension and YH and
�ijkl are functions of e given in �16�. A plot of YH is given in
Fig. 3. �t is calculated in �18� 1 and is given by

�ij
t = 3��YHb2

a2D�
S2

��ikldj + � jkldi�dl�kmndm��nP��dS .

�A2�

It remains to calculate �a. We do this by further decom-
posing ua by writing ua=ua,1+ua,2+ua,3, where

��ua,1 = �pa,1 + cd̂��x − x f� x � R3

� · ua,1 = 0 x � R3

ua,1 → 0 x → � ,
	 , �A3�

�
�ua,2 = �pa,2 x � R3 \ B

� · ua,2 = 0 x � R3 \ B

ua,2 = − ua,1 x � �B

ua,2 → 0 x → �
	 , �A4�

and

�
�ua,3 = �pa,3 x � R3 \ B

� · ua,3 = 0 x � R3 \ B

ua,3 = va x � �B

ua,3 → 0 x → �

�
�B

��a,1 + �a,2 + �a,3� · �̂dx + cd̂ = 0.
	
�A5�

ua,3 is the flow due to a translating spheroid and ua,1 is a
force monopole, both of which produce no bulk stress. The
bulk stress due to ua,2 can be calculated without actually
solving the problem by applying Faxén’s law for prolate
spheroids �see �17��,

�ij
a,2�d̂� = −

5

2e3���ijkl�
−be

be

��be�2 − �2�1 + ��be�2

− �2�
1 − e2

8e2 ��� �uk
a,1

�xl
+

�ul
a,1

�xk
��

d̂�

d� . �A6�

Performing the integration in Eq. �A6� and averaging over
orientations, we get

�ij
a = �ij

a,2 =
c

16�a2�K�
S2

��ij − 3didj�P�dS , �A7�

where K is given in �16�. A plot of K is given in Fig. 3.
Combining Eqs. �A1�, �A2�, and �A7�, we get Eq. �6�.
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